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I. The present status of the question. In the semi-empirical theories 

which are widely applied at the present time for turbulent motion and 

heat and mass transfer, the total fluid flow is divided schematically 

into sharply distinguished regions where friction and heat and mass trans- 

fer have either a purely molecular character (laminar sublayer) or a 

purely molar character (turbulent core). An intermediate transition region 

(sometimes called the “buffer” region) may be introduced to increase the 

accuracy of the theory of heat and mass transfer, but the laws governing 

this region have been studied only superficially and have usually been 

replaced by approximate empirical relationships. 

Experiments defining the mean velocity near a body surface, among them 

some pertaining to recent times [ 1 I, are presented in Fig. 1. From these 

data it is seen that there is a transition (6) from the linear velocity 

profile immediately at the surface, represented by the curved line (a) in 

this semi-logarithmic plot, to a logarithmic profile far from the surface 

of the body - the straight line (cl. All three regions have been included 

in analytic expressions for the velocity profile obtained in various 

theoretical investigations. We will begin with a reference to the earliest 

work in this direction, by the Japanese scientist, Wada [2 1 in 1927. For 

the calculation of the effect of viscosity on the mechanism of turbulent 

friction he proposed the formula 

which expresses a simple superposition of purely laminar (molecular) 

friction and turbulent (molar) friction, the latter being independent of 

the molecular viscosity. The first term in this formula represents the 

law of Newton, and the second the formula of Prandtl. Both terms are 

appropriate for the simplest steady rectilinear motion parallel to a plane. 

844 
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The validity of formula (1.1) is debatable, inasmuch as the result of 

molar transport of momentum, described by the second term in the well- 

known formula of Reynolds 

(I.3 

contains, in addition, an inherent influence of molecular viscosity nhiah 

is essential for the transition region but is not taken into account in 

Prandtl’s formula. Thus, the mutual influence of the processes of 

molecular and molar momentum transport is reduced in the relationship 

(1.1) to a simple superposition. 

The formula (1.1) has formed the starting point for all subsequent 

investigations in this direction, and in particular for contributions by 

Szablewski [ 5 I, van Driest [4 I and Miles [ 5 I which have recently 

appeared in foreign publications. The shortcomings of formula (1.1) are 

concealed in these papers because of unavoidable adjustments made by the 

authors in the law for the variation of the “mixing length. 1. Thus, for 

example, the second of the above authors employs. instead of the simple 

and well-known formula of Prandtl, 1 = KY, a considerably more complicated 

law 

1 = xy (1 - t+‘A) 

which contains a new empirical constant A and whose use is excused by 

artificial considerations concerning increased damping of the fluctuation 

close to the solid surface. The other authors, with the same object, also 

distort the initial development of the quantity 1 in a certain experi- 

mentally determined interval near the wall. 

Fig. 1. 

The course of the present investigation is in principle different. 

What is proposed is an extension, to the whole field of turbulent motion 
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where there is an interaction of molecular and molar processes, of the 

hypothesis of localness for the mechanism of turbulent mixing and for the 

Reynolds analogy between the transport of momentum and heat. This allows 

the establishment of a single point of view for the whole existing semi- 

empirical theory and the derivation of new formulas for friction and heat 

transfer in turbulent motion Application of these formulas determines 

the velocity profile and the excess temperature in terms of analytic 

expressions which are continuous and have continuous first derivatives 

normal to the direction of flow throughout the laminar, transition, and 

completely turbulent regions. 

2. ‘T%e hypothesis of loealness in contemporary semi-empirical theories 
of turbulence. A characteristic feature of the semi-empirical theories of 

turbulence commonly accepted at the present time is an assumption con- 

cerning their differential nature, in that the mechanism of purely 

turbulent (molar) momentum transport is assumed to be completely deter- 

mined when local values are assigned for the physical constants of the 

fluid and for the derivatives of the mean velocity along the coordinate 

normal to the direction of flow. The absolute magnitude of the mean velo- 

city at a given point in a steady flow has no effect on the turbulent 

transport mechanism, being equivalent to the velocity of a uniformly 

moving system of coordinates which may be mentally associated with the 

moving layer under consideration. Moreover, it is assumed that at a 

sufficient distance from the solid surface the molar exchange dominates 

over the molecular exchange to such an extent that there is no great 

error in neglecting the ordinary viscosity and heat conductivity by com- 

parison with their turbulent analogs. 

These assumptions in the aggregate make up the content of a hypothesis 

underlying all modern semi-empirical theories of turbulence, a hypothesis 

which might be termed *the hypothesis of localness for the turbulent 

transport eechanisuP. 

In contrast to the differential approach just described, none of the 

alternative “integral” formulations of turbulent transport, which take 

into account the influence of processes occurring far away from a given 

point in a turbulent flow. have so far been usefully expressed in concrete 

form. 

It is well known [6 ] that the semi-empirical formulas of Prandtl and 
Karman may be immediately derived on the basis of the specified hypothesis 

of localness together with simple dimensional arguments. If it is assumed 
as a “first approximation”* that the local variation of mean velocity is 

defined by a single first derivative dn/dy, then dimensional considera- 

tions necessarily lead to the introduction of a certain length l(y) - the 

l The notion of first, second, etc. approximations is arbitrary here. 
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Prandt 1 “mixing length” - as an additional concept without which it is 

not possible within this approximation to construct a formula for the 

shearing stress according to the hypothesis of localness. On introducing 

the length in question, one may at once convince oneself by simple 

dimensional considerations that under these conditions there exists only 

one possible combination expressing the shearing stress T in terms of the 

density of the fluid p, the “mixing lengthHI, and the derivative du/dy; 

At the same time, of course, a quantitative expression for the depend- 

ence Z(y) follows out of certain further arguments which are not part of 

the hypothesis of localness in the “first approximation”. 

Using the “second approximation”, i.e. assigning changes in mean velo- 

city to the first two derivatives u’(y) and u”(y), we infer from the same 

dimensional considerations the existence and uniqueness of Karman’s 

formula for the shearing stress, 

where K is a certain dimensionless constant. 

Comparing formulas (2.1) and (2.2), which refer to different “approxi- 

mations”-and we will stress this point-the well-known formula of 

Karman is obtained, 

(2.3) 

However, it seems to us more correct to think that the theory of the 
“second approximation” does not require the introduction of a “mixing 

length”1, which is a quantity foreign to the phenomenological theories 

under consideration. 

Application of the semi-empirical theories to processes of turbulent 

heat transfer is based on the so-called “Reynolds analogy”, which is 

based in turn on the community of momentum and heat with their carrier. 

According to this analogy it may be assumed that the dynamic coefficient 

of turbulent mixing A and the kinematic coefficient c = A/p for the finite 

volumes of fluid participating in the turbulent mixing have the same value 

in transport processes for momentum and for heat. Such an assumption pre- 

supposes the absence of effects caused by changes in the heat content of 

the flow in the turbulent mixing mechanism (the hypothesis of inertness, 

as regards the turbulent structure of the flow, for a quantity transferred 
with the fluid) and probably is correct for not too large changes in 
temperature. 

The analogy of Reynolds may be represented quantitatively as 
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du dt? Q dt3 
T = pE d- ) 

-_=e 
Y 

q = pcpe&j Or 7 Pd7; * (2.4) 

Denoting the coefficient of molecular heat conductivity by A, we have 

the equalities 

du d8 4 
T=l*Ty’ q=hdy or F= o du 

A comparison of formulas (2.4) and (2.5), in which the “Reynoids ana- 
logy” is expressed for turbulent and for laminar motion, shows that the 
ratio q/r will be identical in the two cases if the Prandtl number u is 
equal to unity. 

3. Ihe hypothesis of localness and the Reynolds analogy 
when there is an interaction between molecular and molar ex- 
change. We will now enlarge the domain of application of the hypothesis 
of localness by giving up the assumption which mas made in the fonaula- 

tion of Section 2 concerning the absence of molecular effects in molar 

transport. In other words, the influence of the viscosity and heat con- 

ductivity of the fluid on the turbulent transport mechanism will be con- 

sidered. According to the hypothesis of localriess, this influence should 

be expressed by the introduction into the friction and heat transfer laws 

of additional factors incorporating functions of the local Reynolds or 

Peclet number. According to this sane hypothesis of localness, we will 

understand by the local Reynolds number a dimensionless combination of 

the physical constants of the fluid, density and viscosity, together with 

quantities specifying the variation of mean velocity. 'lhis combination 

will be inversely proportional to the first power of the viscosity 

coefficient. It is easy to contrive a relationship to serve as the required 

combination, 

R+ (3.1) 

in which the quantity t, having the dimensions of kinematic viscosity and 

representing a combination of the quantities 1 and du/dy in the -first 

approximation", of u'(y) and u'?y) in the *second approximationn, and so 

on, is seen from the form of its dependence on these quantities to be 

nothing else but the kinematic turbulent exchange coefficient for the 

case of zero viscosity. Thus we will have in the *first approximation" 

and in the "second approximationn respectively* 

R=‘adU xws 
v dy’ R=u,,, (3.21 

l The use of the concept crf local Reynolds number in the *first approxi- 
mat ion* apparently originated in our papers on the application of the 
theory of similitude to turbulent flow 17 1. 
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As usual, we wil? understand by the local Peclet number P the product 

of local Reynolds number and Prandtl nmnber; that is, we will put 

Ihen the following formulas for friction and heat transfer appear as 

a quantitative expression of the generalized hypothesis of localness: 

(3.4) 

(3.5) 

At this point all that can be said concerning the functions f and fl 

is that each is equal to unity in the region where the motion and heat 

transfer are lkninar, in accordance with the laws of Newton and Fourier 

(2.5). Each is also equal to its argument in the region of fully turbulent 

exchange, for only then do the quantities Y and X of molecular origin 

drop out of formulas (3.4) and (3.5) so that these formulas take on the 

form (2.4). 

It follows that the functions f and fl coincide when their arguments 

vary in the regions 0 < R < R, and 0 < u R <u R, , where R, represents a 

critical local Reynolds number corresponding to the boundary of the region 

of laminar motion, and that each function tends asymptotically to its 

argument for indefinitely large values of these arguments. 

It is natural to suppose that the function f(R), representing the 

ratio of total friction to laminar friction in the transition region, 

ought to increase sharply beginning at the point R = R, where molar trans- 

fer first emerges as much more important than molecular transfer. Such 

behavior may be imparted to the function f CR) by using the segment AL 
(Fig. 2) of one branch of a rectangular hyperbola with asymptotes f = 2 R. 

‘lhen an analytic expression for the function f(R) over the whole interval 

of change in R will be provided by 

m={ I 
Y HZ - H”2 + 1 

Repeating exactly the same reasoning, 

fl(o R I the analytic expression 

for O<RfRo 

for Ro&R 
(3.6) 

we will take for the function 

(3.7) 

This shows that if the turbulent mixing coefficients E (or A) for 

transport of momentum and heat are considered as identical in the treat- 

ment adopted here for the Reynolds analogy in the region of purely molar 

transfer, then the functions f and fl may also be considered as identical. 
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du du E=/2-=K2y2- 
dy dY 

and at the edge of the laminar region, where y = yo, 

Eg = x2yo 
2 ($)J 

Equation (3.9) is then broken up into two parts, 

(4.2) 

We now introduce universal coordinates 

Cj = $, .q = Y! 
Y ’ (4.5) 

in terms of which the equations assume the form 

(4.6) 

(4.7) 

From the first it follows that 

yi = vj for O<~?%I (4.8) 

Noting that (d$/dv IO = 1, and solving the second equation for 

d$/dq, we obtain 

& 'I&q"* - 1 f 1/(x%Jo4 -1)" + 4X’?’ l/z 

dr,= I 2z”q4 1 
or, retaining naturally only the upper sign and somewhat rearranging the 
right-hand side, 

Making the substitution 

we arrive at a quadrature 

(4.11) 

in which the boundary condition of the problem has already been satisfied: 
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‘f = rlo for r) = ?o (4.12) 

Performing the integration on the right-hand side of (4.111, we find 

the following velocity distribution in universal coordinates; 

where 

for OSqGqo 

~=(~~+X-~[e(t,)--~(f)l for ?G?o 

e(t)=t-+~- tan-l t 

(4.13) 

(4.14) 

'Ihis velocity distribution is imnediately seen from the formula to be 

continuous at the point q = vO. Evaluating the right-hand side of (4.9) at 

9 = To, we may satisfy ourselves that at this point dq5/dq= 1, so that 

the proposed distribution is not only continuous at the point '1 = q. but 

also has a continuous first derivative at this point. 

It remains to determine the constants K and qo. 'Ihe fact deserves 

attention that in the llfirst approximationR a study of the transition 

region does not increase the number of empirical constants. 

In order to determine K and q. we will work out the asymptotic 

expression for ~$1) corresponding to q~ + 00 or t + 1. We will have, 

according to (4.10) and (4.14), the following asymptotic equality; 

t--1- 
x4q04 - 1 
f&q - ) 0 (t) - 1 -$ln2-+t++ln(t--41) 

whereupon it is not difficult to find an asymptotic expression for 

function 4(p), 

Y (4 - -$ ln rl + C iqov x) 
with 

c (TOI x) = To + + (to - 1) - & 1 n-...---.-&-ln(y)_ :u,” ; 
- _;._ tan-l to + f 

(4.15) 

the 

(4.16) 

(4.17) 

'lhe asymptotic equality (4.16) is nothing else but the well-known 

logarithmic velocity law. Putting this law in the form 

r,z = 5.6logq + 4.9 (4.18) 

which is apparently more accurate [l I than the formula of Nikuradse, and 
comparing (4.16) with (4.181, we obtain on rounding off the value of q. 

x-0.41, 'lo = 7 (4.19) 

It is self-evident that these constants could have been determined by 

a fit to the logarithmic formula of Nikuradse, 
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ti specifying the 

ion for the velocity 

P, = 5.75logr) + 5.5 

constants, we obtain the following analytic express- 

profile in the whole field: 

('1 Sor 0<7l.S7 

I (4.20) 

A comparison of results calculated according to formula (4.20) with 

experimental data [l] (Fig. l)* leads to a completely satisfactory 

agreement. 

The computation of the velocity profile becomes a rather more compli- 
cated matter, if one takes into account the known linear variation of 

shearing stress normal to the flow in a pipe, or uses a more complicated 

law for the variation of the quantity 2, or considers a parameter contain- 

ing some measure of longitudinal pressure gradient. The existence of 

good agreement between the experimental data and tL simple velocity 

profile (4.20), which does not consider these effects, is explained by 

the relatively small extent (about 20 per cent of the pipe radius) of the 

region where the velocity profile changes from linear to logarithmic, 

and by the weakness of the subsequent deviation of the profile from the 

logarithmic law. 

We will pause now to consider cases for which the distribution of 

friction across the flow is not known beforehand (boundary layer, jet, 

wake, etc.), so that it is necessary to use the general equations of 

mean turbulent motion in the form given by Reynolds, equations which 

contain the derivative 8~ /dy of the shearing stress along a coordinate 

normal to the flow. 'lhe application of formulas (3.9) and (3.10) in these 

cases is not admissible on the‘grounds, firstly, that differentiation of 

the approximate formulas may lead to significant errors, and secondly, 

that the appearance of higher velocity derivatives is scarcely permiss- 

ible in expressions where, depending on the nmnber of the approximation, 

derivatives of corresponding order have previously been discarded. It is 

more correct in these cases to apply the hypothesis of localness to the 

derivative rJr /r3y directly, putting 

* Although the experimental points in Fig. 1 are not identified, they 
represent,as a matter of fact, the results of measurements by diffe- 
rent authors (Laufer, Schultz-Grunon and others). We have taken this 

set of points from Fig. 4 of the survey by Clauser [ 1 f . 
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(4.21) 

where the function f and the local Reynolds number R have the same mean- 

ing as before. Thus in the case of the llfirst approximation n we will 

have 
a7 __ _ 
8Y 

pf3. I (12 WdY) 

8Y2 Y 
(4.22) 

It is easily seen that an asymptotic expression for this formula 

corresponding to the assumption about the absence of effects of molecular 

viscosity is provided by the well-known formula of Taylor, 

ar 012 ay=, a” azu 
ay aY2 

(4.23) 

which is known to give results sometimes agreeing with and sometimes 

differing from those of Prandtl's theory. 

According to the considerations stated in the present article the 

formula of Taylor (4.23), together with its generalizations contained in 

the general formula (4.21), should occupy an independent position in the 

semi-empirical theories of turbulence. This question will constitute the 

subject of a separate investigation. 

5. Determination of the uniform temperature profile accord- 
ing to the afirst approximation*. For the case of velocity and 
temperature independent of the longitudinal coordinate, if follows from 

the equations of mean motion and mean heat transfer that one may take 

-C = &, 'I ==Qw (5.1) 

where q, is the rate of heat transfer per unit time per unit surface 

area for a body imaersed in the fluid. 

In addition to the universal scales for velocity V* and length 1* = 

V/U+ considered earlier, we will introduce a scale for temperature 8* 

together with a dimensionless quantity $J, 

4 = ;.- a* :25!__ 
l PCPUI 

Putting, as before, 

1= xy, 

we may rewrite the basic equations (3.9) and (3.10) in the form 

(S.2) 

jS.3) 
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It is readily seen that if a new independent variable [ = aq is 

introduced in the system of equations (5.5) they take on the form 

(5.6) 

Comparing the systems (5.6) and (5.41, the boundary conditions 

T=O for?--0, +=O for c-0 (5.7) 

in the laminar region of flow, and the conditions for joining the solu- 

tions at the edge of this region, 

'p = To for '1= 707 $= Co for C-Co (5.8) 

we conclude that the following equation will be satisfied in the entire 

field of flow. 

+$ = F(q) (5.9) 

'lhus, the universal distribution of dimensionless temperature for a 

given value of the Prandtl number may easily be constructed from the 

known velocity distribution (4.20). The method of construction is based 

on the property established by the relationship (5.9); the value of the 

ordinate for the temperature ratio $= e/6* at a point with abscissa q 

is equal to the value of the ordinate for the dimensionless velocity 

$= U/V* at a point with abscissa a~. 

thus (Fig. 1) the curve for the dimensionless temperature distribution 

0/e, lies above and to the left of the curve for the dimensionless velo- 

city U/V* if (I > 1 and below and to the right of this same curve if u < 1. 

For u = 1 the curves coincide. As an example, the position of the tempe- 

rature curves is shown in Fig. 1 for the values u = l/2, 1, 2. Curves of 

similar type but with breaks at the boundaries of the transition region 

are obtained in the well-known theory of Karman [9 1. 

6. Remarks on the velocity profile according to the 
*second approximation*. As has already been shown in Section 3, the 
hypothesis of localness in the lsecond approximation" is expressed by 

the formula 
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where R is the local Reynolds number, 

In the laminar region the function f remains the same as in the case 

of the “first approximation”; i.e. equal to unity, but in the turbulent 
region it tends with increasing local Reynolds number to the linear 

function 

(6.2) 

where x2 is an unknown coefficient of proportionality which has to be de- 

termined experimentally. & substituting this value of the function in 

the basic relationship (6.1) we obtain Karman’s formula (2.21, which, 

like the earlier formula of Prandtl (2.11, may be considered as an 

asymptotic expression for the general stress formula 

In this case the question of joining the solution in the laminar 

region with the remaining portion of the flow presents a certain diffi- 

culty. The local definition (6.1) for the Reynolds number R assumes a 

priori that u”f 0, but this condition is not fulfilled in the laminar 

region, CXte may proceed in one of the following two ways: either, by 

abandoning the continuous variation of the Rqnolds number and inserting 

for the turbulent region the initial Reynolds number (here and in the 

sequel primes denote derivatives of 95 with respect to the universal CO- 
ordinate 1, whereupon $, ’ = 1) 

where $ *’ appears as a new empirical constant; or, using the Reynolds 

number from the *first approximations for the laminar region, one may 
determine $ ” by requiring continuity in the local Reynolds number at 

the edge of the laminar region, 

so that G#+,’ = 1) 

The second derivative fp’* iq) will certainly be subject to a discontin- 
uity at the point q ~11 qO t but the function &q 1 and its first derivative 

will preserve their continuity in the whole field of flow. If one agrees 
to use the approximate equality (6.61, then the further solution will 
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not involve an increase of the number of experimental constants but will 

keep the same two unknown constants K and qO as in the first approxima- 

tion. 

For the case of uniform motion considered in the present article 

(r = rl) we will have, according to the second of the equalities (6.3) 

when expressed in universal variables, 

(6.7) 

From this, solving for d“, we obtain 

%@a 
q'" = - [I +(X4,(pOLqcp'~14 

(6.8) 

where $o "is determined by (6.6), and the minus sign before the fraction 

on the right-hand side agrees with the condition that the slope of the 

velocity profile should decrease on moving away from the surface of the 

body. 'lhe constant difference standing in the parentheses under the 

radical in the denominator is equal, according to (6.6), to 

2&l =x4y04-1 

‘PO 
(6.9) 

and may be treated as a positive quantity. 

Substituting in equation (6.8) 

tr 
,.+I’ - 1/ t 

@=I for q=q, t=to=x/qou>i ’ 
to’ - 1 cp'=O for l)=OI, t=l 1 (6.10) 

we obtain the differential equation 

d7j=-++l 
tddt 

(P - I).‘2 

whose integral satisfying the boundary condition 

t = t, for ?=rlo 

is provided by 
t. 

(6.11) 

(6.12) 

Evaluation of the integral on the right gives 

7j-_10=-;l/to4-l( v-i&- Y,“” 1 -+!l/&) (6.13) t 
'lhe remaining integral on the right-hand side cannot be expressed in 

terms of elementary functions, but may be rewritten in the form 
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1 
= v2 F 

[ ( set -l to; v+-, - F (k? 1 \ 

\ t; 1T-j 1 
(L14) 

where the usual notation is used for the elliptic integral of the first 
kind, 

Thus we have 

(b.15) 

(ti.16) 

& the other hand, from (6.10) and (6.11) we have 
.- 

so that, integrating and taking into account the boundary condition 

'2 z r,,, 1 z= 1, for ?==%I 

we obtain 

where the notation of (4.14) is retained. 

The combined equations (6.16) and (6.17) give the desired velocity 

profile in the nsecond approximation'. QI working out the expressions on 

the right-hand sides of these equalities near t = 1 and eliminating t, we 

are led to an asymptotic logarithmic formula for the velocity when 17 is 

large. In the present article, however, we will content ourselves with 
the general considerations already presented. 
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