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1. The present status of the question. In the semi-empirical theories
which are widely applied at the present time for turbulent motion and

heat and mass transfer, the total fluid flow is divided schematically

into sharply distinguished regions where friction and heat and mass trans-
fer have either a purely molecular character (laminar sublayer) or a
purely molar character (turbulent core). An intermediate transition region
(sometimes called the "buffer* region) may be introduced to increase the
accuracy of the theory of heat and mass transfer, but the laws governing
this region have been studied only superficially and have usually been
replaced by approximate empirical relationships.

Experiments defining the mean velocity near a body surface, among them
some pertaining to recent times [1], are presented in Fig., 1. From these
data it is seen that there is a tramsition (b) from the linear velocity
profile immediately at the surface, represented by the curved line (a) in
this semi-logarithmic plot, to a logarithmic profile far from the surface
of the body - the straight line (¢). All three regions have been included
in analytic expressions for the velocity profile obtained in various
theoretical investigations. We will begin with a reference to the earliest
work in this direction, by the Japanese scientist, Wada [2 ] in 1927. For
the calculation of the effect of viscosity on the mechanism of turbulent
friction he proposed the formula

2
which expresses a simple superposition of purely laminar (molecular)
friction and turbulent (molar) friction, the latter being independent of
the molecular viscosity. The first term in this formula represents the
law of Newton, and the second the formula of Prandtl. Both terms are
appropriate for the simplest steady rectilinear motion parallel to a plane.

844



Localness in the turbulent motion of a viscous fluid 845

The validity of formula (1.1) is debatable, inasmuch as the result of
molar transport of momentum, described by the second term in the well-
known formula of Reynolds

d _
T =gy (— ) (1.2)

contains, in addition, an inherent influence of molecular viscosity which
is essential for the transition region but is not taken into account in
Prandtl’s formula. Thus, the mutual influence of the processes of
molecular and molar momentum transport is reduced in the relationship
(1.1) to a simple superposition.

The formula (1.1) has formed the starting point for all subsequent
investigations in this direction, and in particular for contributions by
szablewski [3 ], van Driest [4 ] and Miles [5 ] which have recently
appeared in foreign publications. The shortcomings of formula (1.1) are
concealed in these papers because of unavoidable adjustments made by the
authors in the law for the variation of the "mixing length® l. Thus, for
example, the second of the above authors employs, instead of the simple
and well-known formula of Prandtl, | = xy, a considerably more complicated
law

I=xy(1— e¥'4)

which contains a new empirical constant A and whose use is excused by
artificial considerations concerning increased damping of the fluctuation
close to the solid surface. The other authors, with the same object, also
distort the initial development of the quantity Il in a certain experi-
mentally determined interval near the wall.
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The course of the present investigation is in principle different.
What is proposed is an extension, to the whole field of turbulent motion
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where there is an interaction of molecular and molar processes, of the
hypothesis of localness for the mechanism of turbulent mixing and for the
Reynolds analogy between the transport of momentum and heat. This allows
the establishment of a single point of view for the whole existing semi-
empirical theory and the derivation of new formulas for friction and heat
transfer in turbulent motion Application of these formulas determines
the velocity profile and the excess temperature in terms of analytic
expressions which are continuous and have continuous first derivatives
normal to the direction of flow throughout the laminar, transition, and
completely turbulent regions,

2. The hypothesis of localness in contemporary semi-empirical theories
of turbulence. A characteristic feature of the semi-empirical theories of
turbulence commonly accepted at the present time is an assumption con-
cerning their differential nature, in that the mechanism of purely
turbulent (molar) momentum transport is assumed to be completely deter-
mined when local values are assigned for the physical constants of the
fluid and for the derivatives of the mean velocity along the coordinate
normal to the direction of flow. The absolute magnitude of the mean velo-
city at a given point in a steady flow has no effect on the turbulent
transport mechanism, being equivalent to the velocity of a uniformly
moving system of coordinates which may be mentally associated with the
moving layer under consideration. Moreover, it is assumed that at a
sufficient distance from the solid surface the molar exchange dominates
over the molecular exchange to such an extent that there is no great
error in neglecting the ordinary viscosity and heat conductivity by com-
parison with their turbulent analogs.

These assumptions in the aggregate make up the content of a hypothesis
underlying all modern semi-empirical theories of turbulence, a hypothesis
which might be termed *the hypothesis of localness for the turbulent
transport mechanism",

In contrast to the differential approach just described, none of the
alternative *integral® formulations of turbulent transport, which take
into account the influence of processes occurring far away from a given
point in a turbulent flow, have so far been usefully expressed in concrete
form,

It is well known [ 6 ] that the semi-empirical formulas of Prandtl and
Karman may be immediately derived on the basis of the specified hypothesis
of localness together with simple dimensional arguments, If it is assumed
as a "first approximation"* that the local variation of mean velocity is
defined by a single first derivative da/dy, then dimensional considera-
tions necessarily lead to the introduction of a certain length I(y) - the

* The notion of first, second, etc. approximations is arbitrary here.
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Prandt]l "mixing length" - as an additional concept without which it is
not possible within this approximation to construct a formula for the
shearing stress according to the hypothesis of localness. On introducing
the length in question, one may at once convince oneself by simple
dimensional considerations that under these conditions there exists only
one possible combination expressing the shearing stress r in terms of the
density of the fluid p, the "mixing length"l, and the derivative du/dy;

/du 2
- = pl? —> (2.1)
¢ (\dy

At the same time, of course, a quantitative expression for the depend-
ence l(y) follows out of certain further arguments which are not part of
the hypothesis of localness in the "first approximation",

Using the "second approximation®, i,e. assigning changes in mean velo-
city to the first two derivatives u”(y) and a™(y), we infer from the same
dimensional considerations the existence and uniqueness of Karman's
formula for the shearing stress,

u's
7 = px? BE (2.2)
where k is a certain dimensionless constant.

Comparing formulas (2.1) and (2.2), which refer to different "approxi-
mations"—and we will stress this point-the well-known formula of
Karman is obtained,

’

l=—un %’ (2‘3)

However, it seems to us more correct to think that the theory of the
"second appraximation" does not require the introduction of a "mixing
length" !, which is a quantity foreign to the phenomenological theories
under consideration.

Application of the semi-empirical theories to processes of turbulent
heat transfer is based on the so-called "Reynolds analogy", which is
based in turn on the community of momentum and heat with their carrier.
According to this analogy it may be assumed that the dynamic coefficient
of turbulent mixing A and the kinematic coefficient ¢ = A/p for the finite
volumes of fluid participating in the turbulent mixing have the same value
in transport processes for momentum and for heat. Such an assumption pre-
supposes the absence of effects caused by changes in the heat content of
the flow in the turbulent mixing mechanism (the hypothesis of inertness,
as regards the turbulent structure of the flow, for a quantity transferred
with the fluid) and probably is correct for not too large changes in
temperature.

The analogy of Reynolds may be represented quantitatively as
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du a9 q d9
T=eeg g=pcE gy, or T =% du- (2.4)

Denoting the coefficient of molecular heat conductivity by A, we have
the equalities

du d9 q ¢p db we,
’t‘=|J-E!‘I, q=7\a—y‘ or — =g . (Gz—l—) (2.5)

A comparison of formulas (2.4) and (2.5), in which the "Reynolds ana-
logy" is expressed for turbulent and for laminar motion, shows that the
ratio ¢/r will be identical in the two cases if the Prandtl number o is
equal to unity.

3. The hypothesis of localness and the Reynolds analogy
vhen there is an interaction between molecular and molar ex-
change. We will now enlarge the domain of application of the hypothesis
of localness by giving up the assumption which mas made in the formula-
tion of Section 2 concerning the absence of molecular effects in molar
transport. In other words, the influence of the viscosity and heat con-
ductivity of the fluid on the turbulent transport mechanism will be con-
sidered. According to the hypothesis of localness, this influence should
be expressed by the introduction into the friction and heat transfer laws
of additional factors incorporating functions of the local Reynolds or
Peclet number. According to this same hypothesis of localness, we will
understand by the local Reynolds number a dimensionless combination of
the physical constants of the fluid, density and viscosity, together with
quantities specifying the variation of mean velocity. This combination
will be inversely proportional to the first power of the viscosity
coefficient. It is easy to contrive a relationship to serve as the required
combination,

R=~ (3.1)

in which the quantity ¢, having the dimensions of kinematic viscosity and
representing a combination of the quantities ! and du/dy in the *first
approximation®, of u’(y) and u™{y) in the *second approximation®", and so
on, is seen from the form of its dependence on these quantities to be
nothing else but the kinematic turbulent exchange coefficient for the
case of zero viscosity. Thus we will have in the "first approximation"
and in the "second approximation" respectively®*
12 du xS

R=L%

v dy’ T ovurd

(3.2)

* The use of the concept of local Reynolds number in the *first approxi-
mation" apparently originated in our papers on the application of the
theory of similitude to turbulent flow [ 7],
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As usual, we will understand by the local Peclet number P the product
of local Reynolds number and Prandtl number; that is, we will put

P:QR=pcpe

; (3.3)

Then the following formulas for friction and heat transfer appear as
a quantitative expression of the generalized hypothesis of localness:

r= bR =p Z1{=) (3.4)
g= 2P = R =2 P (PE) (3.5)

At this point all that can be said concerning the functions f and fy
is that each is equal to unity in the region where the motion and heat
transfer are laminar, in accordance with the laws of Newton and Fourier
(2.5). Each is also equal to its argument in the region of fully turbulent
exchange, for only then do the quantities v and A of molecular origin
drop out of formulas (3.4) and (3.5) so that these formulas take on the
form (2.4).

It follows that the functions f and f, coincide when their arguments
vary in the regions 0 < R< Ry and 0 < o R<o R, where R, represents a
critical local Reynolds number corresponding to the boundary of the region
of laminar motion, and that each function tends asymptotically to its
argument for indefinitely large values of these arguments.

It is natural to suppose that the function f(R), representing the
ratio of total friction to laminar friction in the transition region,
ought to increase sharply beginning at the point R = R, where molar trans-
fer first emerges as much more important than molecular transfer. Such
behavior may be imparted to the function f(R) by using the segment AL
(Fig. 2) of one branch of a rectangular hyperbola with asymptotes f = % R,
Then an analytic expression for the function f(R) over the whole interval
of change in R will be provided by

1 for 0OsCTR<CR,

S 3.6
VERZRZF1 for Ro<<R (3-6)

=
Repeating exactly the same reasoning, we will take for the function
fi(@R) the analytic expression

1 for O<CoR<CoR,

Hh(sR) = { 3.7

V62R2—02R02+{ for oRy<CoR

This shows that if the turbulent mixing coefficients ¢ (or A) for
transport of momentum and heat are considered as identical in the treat-
ment adopted here for the Reynolds analogy in the region of purely molar
transfer, then the functions f and f, may also be considered as identical.
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Betuming to formulas (3.4) and (3.5), we obtain the following extended
formulation of the Reynolds analogy;
9 _ AI(eRds ] (cK)dd (3.8)
T w f(H) du o f{H) du
It is immediately seen that formula (2.5} will be correct in regions
where processes for transfer of momentum and heat have a purely molecular
character {f = 1}, and on the other hand, that formula (2.4} will be
correct in regions of purely molar transfer [ f(R) = B, floR) = oR ]. The
rule just obtained (3.8) shows how the Prandtl number ¢ enters into the
ratio of heat tramsfer to friction in transition regions where molecular
and molar processes interact.

Turning once more to formular (3.4) and {3.5) and substituting for the
fonctions f and fi their values from (3.6} and (3.7}, we cbtain the follow-
ing {inal expressions for r and g;

w du/dy for Ve K=l R,
= { e (3.9
w(dufd) VIETRI 41 gor Re=< H ’
® {d8/dy) for 0w ol <lok,
g = { ‘ S ——— o {3.10)
»A{dS/dy) VorRe R 1 for oliys<aoh

Here R = ¢ /v, but the expression for ¢ depends on the approximation

chosen through the local derivatives of the mean velocity {and the length
).

Fig. 2.

4. Determination of the velocity profile for uniform motion
according to the *first approximation®. Stopping at the ~first
approximation* and considering for simplicity the case of steady turbulent
motion near a smooth plane in the absence of longitudinal pressure
gradients, we will put, following Prandel [8 ]:

T = const = T, == K {4.1)

where 7 is the shearing stress on the smooth surface and x is a constant
to be determined experimentally. Then we will have
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2,2 Tu
ay

du
__j2fu
e =1 3y ="

and at the edge of the laminar region, where y = Yo

6y = w2yt (gdﬁ;)o (4.2)

Equation (3.9) is then broken up into two parts,

du P
W=y, for 0SSy (4.3)

duxty? fdul\? wdyyt fdu\g iz
worg (G @] ey G0

vi [

We now introduce universal coordinates

o oy VAN
goae, n=, w=)/ (4.5)
in terms of which the equations assume the form
de
=1 for O<<n<m (4.6)
de de\? dp\2 fa
@0 [""24 (g;;) — %t (%}0+1} =1 for Mo<<7 (4.7)
From the first it follows that
p==7 for Us<H<n (4.8)

Noting that (d¢/dy )0 = 1, and solving the second equation for
d¢/dn, we obtain

de _ gt — 14V (ximet — 1) + bt |
dn [ 2x47t

or, retaining naturally only the upper sign and somewhat rearranging the
right-hand side,

dp _ [amgt—1 | [peine' — 1) | \Ie)ie 1 4.9)
d—n—{ o +< g +1/,} o (4.€

Making the substitution

P [x"no‘ —1 + ((u‘*no*— 1) + 1)‘12]% (fo= 1> 1)

2utn? 4uigd (4.10)
= Ly = %ng. for %= M, t=1 for m = wo.
we arrive at a quadrature
P b
e =Tt o=+ | w oy (4.11)

i
in which the boundary condition of the problem has already been satisfied:
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p=1" forn="1 (4.12)

Performing the integration on the right-hand side of (4.11), we find
the following velocity distribution in universal coordinates;

n for 0<n<<mo
P {’f]o 4 x71[0(t) — 0 ()] for n=<<Mo (4.13)
where

This velocity distribution is immediately seen from the formula to be
continuous at the point n = 5,. Evaluating the right-hand side of (4.9) at
7 = 1,, we may satisfy ourselves that at this point d¢/dn= 1, so that
the proposed distribution is not only continuous at the point 5 = n, but
also has a continuous first derivative at this point.

It remains to determine the constants «x and ;. The fact deserves
attention that in the "first approximation" a study of the transition
region does not increase the number of empirical constants.

In order to determine x and n, we will work out the asymptotic
expression for ¢(n) corresponding to n + e or t » 1. We will have,
according to (4.10) and (4.14), the following asymptotic equality;

t-—1~%i, 0()~1—Ln2—Lxtlin@e—1) (415)

whereupon 1t is not difficult to find an asymptotic expression for the
function ¢(n),

1 ;
¢ (M ~—1nn+ C (9, %) (4.16)
with

1 1 t 1 1 248
C (M ) = Mo - (fo — 1) — 5 I 2E L — 1 (205
1 T
— - tan 1t + 4 (4.17)

The asymptotic equality (4.16) is nothing else but the well-known
logarithmic velocity law. Putting this law in the form
¢ ==5.6logm+ 4.9 (4.18)
which is apparently more accurate [ 1] than the formula of Nikuradse, and
comparing (4.16) with (4.18), we obtain on rounding off the value of 7,
x=0.41, mp=17 (4.19)
It is self-evident that these constants could have been determined by
a fit to the logarithmic formula of Nikuradse,
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¢ = 5.75log 7 + 5.5

On specifying the constants, we obtain the following analytic express-
ion for the velocity profile in the whole field:

7 for 0K K7

o= 1 10.14— 2.44 (t—_;_ln Z+i -—tan“it) (4.20)

- (Y e

A comparison of results calculated according to formula (4.20) with
experimental data [1] (Fig. 1)* leads to a completely satisfactory
agreement.

The computation of the velocity profile becomes a rather more compli-
cated matter, if one takes into account the known linear variation of
shearing stress normal to the flow in a pipe, or uses a more complicated
law for the variation of the quantity I, or considers a parameter contain-
ing some measure of longitudinal pressure gradient. The existence of
good agreement between the experimental data and the simple velocity
profile (4.20), which does not consider these effects, is explained by
the relatively small extent (about 20 per cent of the pipe radius) of the
region where the velocity profile changes from linear to logarithmic,
and by the weakness of the subsequent deviation of the profile from the
logarithmic law.

We will pause now to consider cases for which the distribution of
friction across the flow is not known beforehand (boundary layer, jet,
wake, etc.), so that it is necessary to use the general equations of
mean turbulent motion in the form given by Reynolds, equations which
contain the derivative dr /0y of the shearing stress along a coordinate
normal to the flow. The application of formulas (3.9) and (3.10) in these
cases is not admissible on the grounds, firstly, that differentiation of
the approximate formulas may lead to significant errors, and secondly,
that the appearance of higher velocity derivatives is scarcely permiss-
ible in expressions where, depending on the number of the approximation,
derivatives of corresponding order have previously been discarded. It is
more correct in these cases to apply the hypothesis of localness to the
derivative dr /dy directly, putting

Although the experimental points in Fig. 1 are not identified, they
represent,as a matter of fact, the results of measurements by diffe-
rent authors (Laufer, Schultz-Grunow and others). We have taken this
set of points from Fig, 4 of the survey by Clauser [ 1].
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aT %u
Z o wlh @ (4.21)
where the function f and the local Reynolds number R have the same mean-
ing as before. Thus in the case of the "first approximation " we will
have s , 2

o, 0, (2 0uwidy)

Tl (4.22)

It is easily seen that an asymptotic expression for this formula
corresponding to the assumption about the absence of effects of molecular
viscosity is provided by the well-known formula of Taylor,
9T 40 Ou 0%

which is known to give results sometimes agreeing with and sometimes
differing from those of Prandtl’'s theory.

According to the considerations stated in the present article the
formula of Taylor (4.23), together with its generalizations contained in
the general formula (4.21), should occupy an independent position in the
semi-empirical theories of turbulence. This question will constitute the
subject of a separate investigation.

5. Determination of the uniform temperature profile accord-
ing to the *first approximation®. For the case of velocity and
temperature independent of the longitudinal coordinate, if follows from
the equations of mean motion and mean heat transfer that one may take

T = Ta, q = quw (9.1)
where g is the rate of heat transfer per unit time per unit surface
area for a body immersed in the fluid.

In addition to the universal scales for velocity v, and length I =
v/v‘ considered earlier, we will introduce a scale for temperature 0
together with a dimensionless quantity i,

9 9o
= - ¥ = 5.9
b= ( S ) (5.2)
. P s
Putting, as before,
— _ B de | eyt du e AR 5.
Z—Ky, R—_ﬂv_ dyﬁ—_v—drydxn dn (9-3)
we may rewrite the basic equations (3.9) and (3.10) in the form
3?4 for 0<’)<’10
T (5.4)

do ad <§?~\2 iy 4<_d?4\2 4 1]112 -
-"4[)‘ n P ) 0 dn )O for My<="M
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4 for 0 <<y,
dn

(5.5)
d do \? do \2 e
ot (S2) — o (2N +1]" tor m<c

}
al» al»

It is readily seen that if a new independent variable { = o7 1is
introduced in the system of equations (5.5) they take on the form

dy
1 = P for 0Kl (5.6)

+1

1 = %?— [M4C4 (%?)2 - K4Co4 (’Z%)j + 1 J lzfor C(\ <

Comparing the systems (5.6) and (5.4), the boundary conditions
¢=0 forn=0, =0 for¢=0 (5.7)

in the laminar region of flow, and the conditions for joining the solu-
tions at the edge of this region,

¢="N for n=1Tp b==C for {=20 (5.8)

we conclude that the following equation will be satisfied in the entire
field of flow.
9

=5, =% (5.9)

Thus, the universal distribution of dimensionless temperature for a
given value of the Prandtl number may easily be constructed from the
known velocity distribution (4.20). The method of construction is based
on the property established by the relationship (5.9); the value of the
ordinate for the temperature ratio i = 0/0* at a point with abscissa g
is equal to the value of the ordinate for the dimensionless velocity
¢ = u/v* at a point with abscissa o 7.

Thus (Fig. 1) the curve for the dimensionless temperature distribution
0/0* lies above and to the left of the curve for the dimensionless velo-
city u/v‘ if 0 > 1 and below and to the right of this same curve if o < 1.
For ¢ = 1 the curves coincide. As an example, the position of the tempe-
rature curves is shown in Fig. 1 for the values ¢ = 1/2, 1, 2. Curves of
similar type but with breaks at the boundaries of the transition region
are obtained in the well-known theory of Karman [9].

6. Remarks on the velocity profile according to the
*second approximation®. As has already been shown in Section 3, the
hypothesis of localness in the "second approximation" is expressed by
the formula
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c—wf(R) (R=200) (6.1)

yu''?
where R is the local Reynolds number,

In the laminar region the function f remains the same as in the case
of the "first approximation”; i.e. equal to unity, but in the turbulent
region it tends with increasing local Reynolds number to the linear
function

i ’8 g w3
/ ( ' ® ‘>M>K e (6.2)

where x* is an unknown coefficient of proportionality which has to be de-
termined experimentally. On substituting this value of the function in
the basic relationship (6.1) we obtain Karman's formula (2.2), which,
like the earlier formula of Prandtl (2.1), may be considered as an
asymptotic expression for the general stress formula

2

[ g for 0OKR <R,
T\ ww VR =R+ for larger R

-
(s

for Bo= R} (6.3)

In this case the question of joining the solution in the laminar
region with the remaining portion of the flow presents a certain diffi-
culty. The local definition (6.1) for the Reynolds number R assumes a
priori that u”# 0, but this condition is not fulfilled in the laminar
region. One may proceed in one of the following two ways: either, by
abandoning the continuous variation of the Reynolds number and inserting
for the turbulent region the initial Reynolds number (here and in the
sequel primes denote derivatives of ¢ with respect to the universal co-
ordinate 5, whereupon ¢,” = 1)

N ETNE 2
Ry= ="t =0m, =9 (+0)  (6.4)
where ¢,” appears as a new empirical constant; or, using the Reynolds
number from the *first approximation® for the laminar region, one may
determine ¢,” by requiring continuity in the local Reynolds number at
the edge of the laminar region,

lo%ug’ 2Py’ w2 '

v v vigg" ®

8

(6.5)

so that (g,” = 1)
| ®o” | Mo
The second derivative ¢ () will certainly be subject to a discontin-
uity at the point = n,, but the function ¢{n) and its first derivative
will preserve their continuity in the whole field of flow. If one agrees
to use the approximate equality (6.6), then the further solution will
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not involve an increase of the number of experimental constants but will
keep the same two unknown constants x and 5, as in the first approxima-
tion.

For the case of uniform motion considered in the present article
(r = r ) we will have, according to the second of the equalities (6.3)
when expressed in universal variables,

, (4’8 4 1,
1=(p(%—<£,,—4—+1) (6.7)

From this, solving for ¢ ”, we obtain
¢ = — x9’? (6.8)
[1+ (/@0 — 1) @72
where ¢,” is determined by (6.6), and the minus sign before the fraction
on the right-hand side agrees with the condition that the slope of the
velocity profile should decrease on moving away from the surface of the

body. The constant difference standing in the parentheses under the
radical in the denominator is equal, according to (6.6), to

1 = ingd — 1 (6.9)

x4
't
and may be treated as a positive quantity.

Substituting in equation (6.8)

A1 r=1 =, l=ty= >0
o = 1/# 1 ¢ for n=71 v=x%/¢" > (6.10)
gt —1 =0 forn=o0, t=1

we obtain the differential equation

2 — 4t
dn = _"‘x—l/tO4 —1 (t— 1)'te (6.11)

whose integral satisfying the boundary condition

t=1t forn=m
is provided by
te
=t 2 ypa—g( _Hat

1Mo =+ L Vie—1| (6.12)

i
Evaluation of the integral on the right gives

te

_ :1_ 4 __ 4 _ to dt
1 “V% 1<Vt4—1 Vw—1+SVﬁ—1) (6.13)

i
The remaining integral on the right-hand side cannot be expressed in
terms of elementary functions, but may be rewritten in the form
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-
L[F(sec—l to; L) —F (5;2-1 z%}] (6.14)

where the usual notation is used for the elliptic integral of the first
kind,

¢
Flo k) — dep .
&%) S Vi snte (6-19)

Thus we have

1 —
n:w_;w_q[y

1 t
o1 Vo1
f
V2

+

+ = F(arcseu‘ 712:>—

V‘ F (arc sec t; VLH (6.16)

On the other hand, from (6.10) and (6.11) we have

1 2 tadi
dy = l/;OT:d"f = AT
so that, integrating and taking into account the boundary condition

© = Yo, 1 ==l for " ="
we obtain

o=ttt — o) 4L 18— 0 () (6.17)
where the notation of (4.14) is retained.

The combined equations (6.16) and (6.17) give the desired velocity
profile in the "second approximation®. On working out the expressions on
the right-hand sides of these equalities near t = 1 and eliminating t, we
are led to an asymptotic logarithmic formula for the velocity when n is
large. In the present article, however, we will content ourselves with
the general considerations already presented.
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